Signal propagation in Bayesian networks and its relationship with intrinsically multivariate predictive variables

نویسندگان

  • David Correa Martins
  • Evaldo A. de Oliveira
  • Ulisses Braga-Neto
  • Ronaldo Fumio Hashimoto
  • Roberto Marcondes Cesar Junior
چکیده

A set of predictor variables is said to be intrinsically multivariate predictive (IMP) for a target variable if all properly contained subsets of the predictor set are poor predictors of the target but the full set predicts the target with great accuracy. In a previous article, the main properties of IMP Boolean variables have been analytically described, including the introduction of the IMP score, a metric based on the coefficient of determination (CoD) as a measure of predictiveness with respect to the target variable. It was shown that the IMP score depends on four main properties: logic of connection, predictive power, covariance between predictors and marginal predictor probabilities (biases). This paper extends that work to a broader context, in an attempt to characterize properties of discrete Bayesian networks that contribute to the presence of variables (network nodes) with high IMP scores. We have found that there is a relationship between the IMP score of a node and its territory size, i.e., its position along a pathway with one source: nodes far from the source display larger IMP scores than those closer to the source, and longer pathways display larger maximum IMP scores. This appears to be a consequence of the fact that nodes with small territory have larger probability of having highly covariate predictors, which leads to smaller IMP scores. In addition, a larger number of XOR and NXOR predictive logic relationships has positive influence over the maximum IMP score found in the pathway. This work presents analytical results based on a simple structure network and an analysis involving random networks constructed by computational simulations. Finally, results from a real Bayesian network application are provided. 2012 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression

Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...

متن کامل

Logic regression and its application in predicting diseases

Regression is one of the most important statistical tools in data analysis and study of the relationship between predictive variables and the response variable. in most issues, regression models and decision tress only can show the main effects of predictor variables on the response and considering interactions between variables does not exceed of two way and ultimately three-way, due to co...

متن کامل

Predictive power of occupational stress and its dimensions by safety climate in workplace: Implications for well-being

Background: Researchers have mentioned that safety climate may predict occupational accidents and psychological distresses in the workplace. The present study examined degree of safety climate related to occupational stress and its dimensions among workers’ Isfahan Steel Company. Methods: A self-administered anonymous was distributed to 189 workers. The survey included demographic factors, oc...

متن کامل

Gaussian Process Regression Networks

We introduce a new regression framework, Gaussian process regression networks (GPRN), which combines the structural properties of Bayesian neural networks with the nonparametric flexibility of Gaussian processes. This model accommodates input dependent signal and noise correlations between multiple response variables, input dependent length-scales and amplitudes, and heavy-tailed predictive dis...

متن کامل

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 225  شماره 

صفحات  -

تاریخ انتشار 2013